Deep Learning for Sampling from Arbitrary Probability Distributions
نویسندگان
چکیده
This paper proposes a fully connected neural network model to map samples from a uniform distribution to samples of any explicitly known probability density function. During the training, the Jensen-Shannon divergence between the distribution of the model’s output and the target distribution is minimized. We experimentally demonstrate that our model converges towards the desired state. It provides an alternative to existing sampling methods such as inversion sampling, rejection sampling, Gaussian mixture models and Markov-Chain-Monte-Carlo. Our model has high sampling efficiency and is easily applied to any probability distribution, without the need of further analytical or numerical calculations. It can produce correlated samples, such that the output distribution converges faster towards the target than for independent samples. But it is also able to produce independent samples, if single values are fed into the network and the input values are independent as well. We focus on one-dimensional sampling, but additionally illustrate a two-dimensional example with a target distribution of dependent variables.
منابع مشابه
Quantum-assisted learning of graphical models with arbitrary pairwise connectivity
Mainstream machine learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks. However, some pressing challenges in state-of-the-art quantum annealers have to be ov...
متن کاملBayesian Deep Q-Learning via Continuous-Time Flows
Efficient exploration in reinforcement learning (RL) can be achieved by incorporating uncertainty into model predictions. Bayesian deep Q-learning provides a principle way for this by modeling Q-values as probability distributions. We propose an efficient algorithm for Bayesian deep Q-learning by posterior sampling actions in the Q-function via continuous-time flows (CTFs), achieving efficient ...
متن کاملUnimodal Probability Distributions for Deep Ordinal Classification
Probability distributions produced by the crossentropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datas...
متن کاملDeep Unsupervised Learning using Nonequilibrium Thermodynamics
A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical ph...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.04211 شماره
صفحات -
تاریخ انتشار 2018